3.1319 \(\int \frac{\cos ^{\frac{3}{2}}(c+d x) (A+B \sec (c+d x)+C \sec ^2(c+d x))}{a+b \sec (c+d x)} \, dx\)

Optimal. Leaf size=147 \[ \frac{2 \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right ) \left (a^2 (A+3 C)-3 a b B+3 A b^2\right )}{3 a^3 d}-\frac{2 b \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^3 d (a+b)}-\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 A \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a d} \]

[Out]

(-2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(a^2*d) + (2*(3*A*b^2 - 3*a*b*B + a^2*(A + 3*C))*EllipticF[(c + d*x
)/2, 2])/(3*a^3*d) - (2*b*(A*b^2 - a*(b*B - a*C))*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a^3*(a + b)*d) +
 (2*A*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.668308, antiderivative size = 147, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 43, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.163, Rules used = {4112, 3049, 3059, 2639, 3002, 2641, 2805} \[ \frac{2 F\left (\left .\frac{1}{2} (c+d x)\right |2\right ) \left (a^2 (A+3 C)-3 a b B+3 A b^2\right )}{3 a^3 d}-\frac{2 b \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^3 d (a+b)}-\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 A \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x]),x]

[Out]

(-2*(A*b - a*B)*EllipticE[(c + d*x)/2, 2])/(a^2*d) + (2*(3*A*b^2 - 3*a*b*B + a^2*(A + 3*C))*EllipticF[(c + d*x
)/2, 2])/(3*a^3*d) - (2*b*(A*b^2 - a*(b*B - a*C))*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a^3*(a + b)*d) +
 (2*A*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*a*d)

Rule 4112

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
 + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[d^(m + 2), Int[(b + a*Cos[e + f*x])^m*(d*
Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}
, x] &&  !IntegerQ[n] && IntegerQ[m]

Rule 3049

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> -Simp[(C*Cos[e + f*x]*(a + b*Sin[e +
 f*x])^m*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(m + n + 2)), x] + Dist[1/(d*(m + n + 2)), Int[(a + b*Sin[e + f*x]
)^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n + 2)
 - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2
, 0] && GtQ[m, 0] &&  !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))

Rule 3059

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Dist[C/(b*d), Int[Sqrt[a + b*Sin[e + f*x]]
, x], x] - Dist[1/(b*d), Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e +
 f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 3002

Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[B/d, Int[(a + b*Sin[e + f*x])^m, x], x] - Dist[(B*c - A*d)/d, Int[(a +
 b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2805

Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2*EllipticPi[(2*b)/(a + b), (1*(e - Pi/2 + f*x))/2, (2*d)/(c + d)])/(f*(a + b)*Sqrt[c + d]), x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{a+b \sec (c+d x)} \, dx &=\int \frac{\sqrt{\cos (c+d x)} \left (C+B \cos (c+d x)+A \cos ^2(c+d x)\right )}{b+a \cos (c+d x)} \, dx\\ &=\frac{2 A \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac{2 \int \frac{\frac{A b}{2}+\frac{1}{2} a (A+3 C) \cos (c+d x)-\frac{3}{2} (A b-a B) \cos ^2(c+d x)}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{3 a}\\ &=\frac{2 A \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a d}-\frac{2 \int \frac{-\frac{1}{2} a A b-\frac{1}{2} \left (3 A b^2-3 a b B+a^2 (A+3 C)\right ) \cos (c+d x)}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{3 a^2}-\frac{(A b-a B) \int \sqrt{\cos (c+d x)} \, dx}{a^2}\\ &=-\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 A \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac{\left (3 A b^2-3 a b B+a^2 (A+3 C)\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{3 a^3}-\frac{\left (b \left (A b^2-a (b B-a C)\right )\right ) \int \frac{1}{\sqrt{\cos (c+d x)} (b+a \cos (c+d x))} \, dx}{a^3}\\ &=-\frac{2 (A b-a B) E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac{2 \left (3 A b^2-3 a b B+a^2 (A+3 C)\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a^3 d}-\frac{2 b \left (A b^2-a (b B-a C)\right ) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a^3 (a+b) d}+\frac{2 A \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a d}\\ \end{align*}

Mathematica [A]  time = 1.34508, size = 218, normalized size = 1.48 \[ \frac{-\frac{6 (A b-a B) \sin (c+d x) \left (2 b (a+b) \text{EllipticF}\left (\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right ),-1\right )-\left (a^2-2 b^2\right ) \Pi \left (-\frac{a}{b};\left .-\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )-2 a b E\left (\left .\sin ^{-1}\left (\sqrt{\cos (c+d x)}\right )\right |-1\right )\right )}{a^2 b \sqrt{\sin ^2(c+d x)}}+\frac{4 (A+3 C) \left ((a+b) \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )-b \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )\right )}{a+b}+\frac{2 (3 a B-A b) \Pi \left (\frac{2 a}{a+b};\left .\frac{1}{2} (c+d x)\right |2\right )}{a+b}+4 A \sin (c+d x) \sqrt{\cos (c+d x)}}{6 a d} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + b*Sec[c + d*x]),x]

[Out]

((2*(-(A*b) + 3*a*B)*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2])/(a + b) + (4*(A + 3*C)*((a + b)*EllipticF[(c +
 d*x)/2, 2] - b*EllipticPi[(2*a)/(a + b), (c + d*x)/2, 2]))/(a + b) + 4*A*Sqrt[Cos[c + d*x]]*Sin[c + d*x] - (6
*(A*b - a*B)*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*b*(a + b)*EllipticF[ArcSin[Sqrt[Cos[c + d*x
]]], -1] - (a^2 - 2*b^2)*EllipticPi[-(a/b), -ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a^2*b*Sqrt[Sin[c
+ d*x]^2]))/(6*a*d)

________________________________________________________________________________________

Maple [B]  time = 3.227, size = 945, normalized size = 6.4 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x)

[Out]

-2/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((4*A*a^3-4*A*a^2*b)*cos(1/2*d*x+1/2*c)*sin(1/2*d
*x+1/2*c)^4+(-2*A*a^3+2*A*a^2*b)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+A*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-A*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*s
in(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*s
in(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*A*b^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin
(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a*b^2+3*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d
*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*b^3-3*B*a^2*b*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*B*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/
2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^3+3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si
n(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a*b^2+3*a^3*C*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*a^2*b*C*(sin(1/2*d*x+1/2*c)
^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+3*C*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticPi(cos(1/2*d*x+1/2*c),2*a/(a-b),2^(1/2))*a^2*b)/a^3/(a-b)/(-2*sin
(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/(b*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \cos \left (d x + c\right )^{\frac{3}{2}}}{b \sec \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c)),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*cos(d*x + c)^(3/2)/(b*sec(d*x + c) + a), x)